Invite your Peers
And receive 1 week of complimentary premium membership
Upcoming Events (0)
ORGANIZE A MEETING OR EVENT
And earn up to €300 per participant.
Research Topics (0)
No research topics
What's the shape of the universe' Mathematicians use topology to study the shape of the world and everything in it
When you look at your surrounding environment, it might seem like you're living on a flat plane. After all, this is why you can navigate a new city using a map: a flat piece of paper that represents all the places around you. This is likely why some people in the past believed the earth to be flat. But most people now know that is far from the truth. You live on the surface of a giant sphere, like a beach ball the size of the Earth with a few bumps added. The surface of the sphere and the plane are two possible 2D spaces, meaning you can walk in two directions: north and south or east and west. Through a field called geometric topology, mathematicians like me study all possible spaces in all dimensions. Whether trying to design secure sensor networks, mine data or use origami to deploy satellites, the underlying language and ideas are likely to be that of topology. When you look around the universe you live in, it looks like a 3D space, just like the surface of the Earth looks like a 2D space. However, just like the Earth, if you were to look at the universe as a whole, it could be a more complicated space, like a giant 3D version of the 2D beach ball surface or something even more exotic than that....
Mark shared this article 1m
Making more magnetism possible with topology
Posted by Mark Field from MIT in Topology
Researchers who have been working for years to understand electron arrangement, or topology, and magnetism in certain semimetals have been frustrated by the fact that the materials only display magnetic properties if they are cooled to just a few degrees above absolute zero. A new MIT study led by Mingda Li, associate professor of nuclear science and engineering, and co-authored by Nathan Drucker, a graduate research assistant in MIT's Quantum Measurement Group and PhD student in applied physics at Harvard University, along with Thanh Nguyen and Phum Siriviboon, MIT graduate students working in the Quantum Measurement Group, is challenging that conventional wisdom. The open-access research, published in Nature Communications, for the first time shows evidence that topology can stabilize magnetic ordering, even well above the magnetic transition temperature ' the point at which magnetism normally breaks down. 'The analogy I like to use to describe why this works is to imagine a river filled with logs, which represent the magnetic moments in the material,' says Drucker, who served as the first author of the paper. 'For magnetism to work, you need all those logs pointing in the same direction, or to have a certain pattern to them. But at high temperatures, the magnetic moments are all oriented in different directions, like the logs would be in a river, and magnetism breaks down....
Mark shared this article 1y
Virtuoso mathematician who re-shaped topology wins Abel Prize
Posted by Mark Field from Nature in Topology
'Sullivan has repeatedly changed the landscape of topology by introducing new concepts, proving landmark theorems, answering old conjectures and formulating new problems that have driven the field forwards,' says the citation for the 2022 Abel Prize, which was announced by the Norwegian Academy of Science and Letters, based in Oslo, on 23 March. Throughout his career, Sullivan has moved from one area of mathematics to another and solved problems using a wide variety of tools, 'like a true virtuoso', the citation added. The prize is worth 7.5 million Norwegian Kroner (US$854,000). Since it was first awarded in 2003, the Abel Prize has come to represent a lifetime achievement award, says Hans Munthe-Kaas, the prize committee chair and a mathematician at the University of Bergen, Norway. The past 24 Abel laureates are all famous mathematicians; many did their most renowned work in the mid-to-late twentieth century. 'It's nice to be included in such an illustrious list,' says Sullivan, who has appointments at both Stony Brook University in Long Island, New York, and at the City University of New York. So far, all but one, 2019 laureate Karen Uhlenbeck, a mathematician at the University of Texas at Austin, have been men....
Mark shared this article 3y
Detangling DNA replication
Posted by Mark Field from MIT in Topology
DNA is a lengthy molecule — approximately 1,000-fold longer than the cell in which it resides — so it can’t be jammed in haphazardly. Rather, it must be neatly organized so proteins involved in critical processes can access the information contained in its nucleotide bases. Think of the double helix like a pair of shoe laces twisted together, coiled upon themselves again and again to make the molecule even more compact. However, when it comes time for cell division, this supercoiled nature makes it difficult for proteins involved in DNA replication to access the strands, separate them, and copy them so one DNA molecule can become two. Replication begins at specific regions of the chromosome where specialized proteins separate the two strands, pulling apart the double helix as you would the two shoe laces. However, this local separation actually tangles the rest of the molecule further, and without intervention creates a buildup of tension, stalling replication. Enter the enzymes known as topoisomerases, which travel ahead of the strands as they are being peeled apart, snipping them, untwisting them, and then rejoining them to relieve the tension that arises from supercoiling....
Mark shared this article 4y
Angelika Amon wins 2019 Breakthrough Prize in Life Sciences
Posted by Mark Field from MIT in Oncology and Topology
Angelika Amon, an MIT professor of biology, is one of five scientists who will receive a 2019 Breakthrough Prize in Life Sciences, given for transformative advances toward understanding living systems and extending human life. Amon, the Kathleen and Curtis Marble Professor in Cancer Research and a member of MIT’s Koch Institute for Integrative Cancer Research, was honored for her work in determining the consequences of aneuploidy, an abnormal chromosome number that results from mis-segregation of chromosomes during cell division. The award, announced this morning, comes with a $3 million prize. “Angelika Amon is an outstanding choice to receive the Breakthrough Prize,” says Tyler Jacks, director of the Koch Institute and the David H. Koch Professor of Biology. “Her work on understanding how cells control the decisions to divide and the effects of imbalances in chromosome number has helped shape how we think about normal development and disease. Angelika is a fearless investigator and a true scientist’s scientist. All of us in the Koch Institute and across MIT are thrilled by this news.”...
Mark shared this article 4y
Steering fusion’s “D-turn”
Trying to duplicate the power of the sun for energy production on earth has challenged fusion researchers for decades. One path to endless carbon-free energy has focused on heating and confining plasma fuel in tokamaks, which use magnetic fields to keep the turbulent plasma circulating within a doughnut-shaped vacuum chamber and away from the walls. Fusion researchers have favored contouring these tokamak plasmas into a triangular or D shape, with the curvature of the D stretching away from the center of the doughnut, which allows plasma to withstand the intense pressures inside the device better than a circular shape. Led by research scientists Alessandro Marinoni of MIT's Plasma Science and Fusion Center (PSFC) and Max Austin, of the University of Texas at Austin, researchers at the DIII-D National Fusion Facility have discovered promising evidence that reversing the conventional shape of the plasma in the tokamak chamber can create a more stable environment for fusion to occur, even under high pressure. The results were recently published in Physical Review Letters and Physics of Plasmas....
Mark shared this article 4y
Designing the microstructure of printed objects
Posted by Mark Field from MIT in Topology
Today’s 3-D printers have a resolution of 600 dots per inch, which means that they could pack a billion tiny cubes of different materials into a volume that measures just 1.67 cubic inches. Such precise control of printed objects’ microstructure gives designers commensurate control of the objects’ physical properties — such as their density or strength, or the way they deform when subjected to stresses. But evaluating the physical effects of every possible combination of even just two materials, for an object consisting of tens of billions of cubes, would be prohibitively time consuming. So researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a new design system that catalogues the physical properties of a huge number of tiny cube clusters. These clusters can then serve as building blocks for larger printable objects. The system thus takes advantage of physical measurements at the microscopic scale, while enabling computationally efficient evaluation of macroscopic designs....
Mark shared this article 4y
Derek Straub: Shaping the future of additive manufacturing
Scattered about Derek Straub's office — its walls only slightly muffling the screech of the surrounding machine shop — are intriguing artifacts: webbed metallic structures, twisted cylinders made of polymer, aluminum blocks whose cross sections reveal intricate architecture inside. They were built, layer by layer, in the MIT Lincoln Laboratory's additive manufacturing (AM) machines. They were also born of Straub's vision. Straub is the AM lead at Lincoln Laboratory. He's now being internationally recognized for his contributions to the additive manufacturing field. The magazine Manufacturing Engineering, a publication of SME (formally the Society of Manufacturing Engineers), has named Straub among the 30 individuals under the age of 30 who are leading the manufacturing industry into the future. "I feel honored, especially to be recognized alongside so many talented and varied people, CEOs, academic researchers, entrepreneurs," says Straub, who works in the Fabrication Engineering Group. "I think one thing that sets me apart is my exploratory mindset. I take calculated, engineering-based risks to push the edge of what's possible in AM and then, at the laboratory, we quickly apply what we've learned straight into our real-world defense applications."...
Mark shared this article 4y
WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x