Invite your colleagues
And receive 1 week of complimentary premium membership
Upcoming Events (0)
ORGANIZE A MEETING OR EVENT
And earn up to €300 per participant.
Sub Circles (0)
No sub circles for Microwaves & Radio Engineering
Research Topics (0)
No research topics
A better device for measuring electromagnetic radiation
Bolometers, devices that monitor electromagnetic radiation through heating of an absorbing material, are used by astronomers and homeowners alike. But most such devices have limited bandwidth and must be operated at ultralow temperatures. Now, researchers say they’ve found a ultrafast yet highly sensitive alternative that can work at room temperature — and may be much less expensive. The findings, published today in the journal Nature Nanotechnology, could help pave the way toward new kinds of astronomical observatories for long-wavelength emissions, new heat sensors for buildings, and even new kinds of quantum sensing and information processing devices, the multidisciplinary research team says. The group includes recent MIT postdoc Dmitri Efetov, Professor Dirk Englund of MIT’s Department of Electrical Engineering and Computer Science, Kin Chung Fong of Raytheon BBN Technologies, and colleagues from MIT and Columbia University. “We believe that our work opens the door to new types of efficient bolometers based on low-dimensional materials,” says Englund, the paper’s senior author. He says the new system, based on the heating of electrons in a small piece of a two-dimensional form of carbon called graphene, for the first time combines both high sensitivity and high bandwidth — orders of magnitude greater than that of conventional bolometers — in a single device....
Mark shared this article 4y
Antenna system developed at Lincoln Laboratory aims to improve wireless communications
The use of wireless devices is exploding. Statista, an international research service, estimated in March 2019 that roughly 13 billion mobile devices (e.g., phones, tablets, laptops) were in use worldwide, and Gartner, a global research and advisory firm, predicts that the internet of things will swell that number to more than 21 billion devices by the end of 2020. The widespread use of mobile devices already creates significant demand on the cellular system that supports all this wireless connectivity, especially at locations, such as an outdoor concert or a sports arena, where large numbers of users may be simultaneously connecting. The ability of current-era cellular technology, or even the proposed next-generation 5G technology, will be severely strained to provide the high data rates and wide-area communication range needed to support the escalating device usage. The communications community has been looking at in-band full-duplex (IBFD) technology to increase the capacity and the number of supported devices by allowing the devices to transmit and receive on the same frequency at the same time. This ability not only doubles the devices' efficiency within the frequency spectrum, but also reduces the time for a message to be processed between send and receive modes....
Mark shared this article 4y
Researchers generate terahertz laser with laughing gas
Terahertz waves have frequencies higher than microwaves and lower than infrared and visible light. Where optical light is blocked by most materials, terahertz waves can pass straight through, similar to microwaves. If they were fashioned into lasers, terahertz waves might enable “T-ray vision,” with the ability to see through clothing, book covers, and other thin materials. Such technology could produce crisp, higher-resolution images than microwaves, and be far safer than X-rays. The reason we don’t see T-ray machines in, for instance, airport security lines and medical imaging facilities is that producing terahertz radiation requires very large, bulky setups or devices, many operating at ultracold temperatures, that produce terahertz radiation at a single frequency — not very useful, given that a wide range of frequencies is required to penetrate various materials. Now researchers from MIT, Harvard University, and the U.S. Army have built a compact device, the size of a shoebox, that works at room temperature to produce a terahertz laser whose frequency they can tune over a wide range. The device is built from commercial, off-the-shelf parts and is designed to generate terahertz waves by spinning up the energy of molecules in nitrous oxide, or, as it’s more commonly known, laughing gas....
Mark shared this article 4y
New metamaterial lens focuses radio waves