Invite your Peers
And receive 1 week of complimentary premium membership
Upcoming Events (0)
ORGANIZE A MEETING OR EVENT
And earn up to €300 per participant.
Sub Circles (0)
No sub circles for Industrial processes
Research Topics (0)
No research topics
Separating molecules is a highly energy-intensive but essential part of drug development, desalination and other industrial processes ' improving membranes can help
Separating molecules is critical to producing many essential products. For example, in petroleum refining, the hydrocarbons ' chemical compounds composed of hydrogens and carbons ' in crude oil are separated into gasoline, diesel and lubricants by sorting them based on their molecular size, shape and weight. In the pharmaceutical industry, the active ingredients in medications are purified by separating drug molecules from the enzymes, solutions and other components used to make them. These separation processes take a substantial amount of energy, accounting for roughly half of U.S. industrial energy use. Traditionally, molecular separations have relied on methods that require intensive heating and cooling that make them very energy inefficient. We are chemical and biological engineers. In our newly published research, we designed a new type of membrane with nanopores that can quickly and precisely separate a diverse range of molecules under harsh industrial conditions. Membranes are physical barriers that can separate molecules in a mixture like a sieve based on their size or affinity ' such as charge or polarity ' to the membrane material. For example, your cells are surrounded by a membrane that transports nutrients into it and transports toxins out of it. Membrane technology include synthetic barriers that can separate molecules in industrially important mixtures at a lower energy cost than traditional methods....
Mark shared this article 1y
Developing electricity-powered, low-emissions alternatives to carbon-intensive industrial processes
Posted by Mark Field from MIT in Industrial processes
On April 11, 2022, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This is the second article in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them. One of the biggest leaps that humankind could take to drastically lower greenhouse gas emissions globally would be the complete decarbonization of industry. But without finding low-cost, environmentally friendly substitutes for industrial materials, the traditional production of steel, cement, ammonia, and ethylene will continue pumping out billions of tons of carbon annually; these sectors alone are responsible for at least one third of society's global greenhouse gas emissions. A major problem is that industrial manufacturers, whose success depends on reliable, cost-efficient, and large-scale production methods, are too heavily invested in processes that have historically been powered by fossil fuels to quickly switch to new alternatives. It's a machine that kicked on more than 100 years ago, and which MIT electrochemical engineer Yet-Ming Chiang says we can't shut off without major disruptions to the world's massive supply chain of these materials. What's needed, Chiang says, is a broader, collaborative clean energy effort that takes 'targeted fundamental research, all the way through to pilot demonstrations that greatly lowers the risk for adoption of new technology by industry.'...
Mark shared this article 3y
Putting Responsible AI Into Practice
Organizations need to develop more-robust processes to ensure responsible use of AI....
Mark shared this article 4y
Deep cuts in greenhouse emissions are tough but doable, experts say
How can the world cut its greenhouse gas emissions in time to avert the most catastrophic impacts of global climate change? It won’t be easy, but there are reasons to be optimistic that the problems can still be solved if the right kind of significant actions are taken within the next few years, according to panelists at the latest MIT symposium on climate change. The symposium, the fourth in a series of six this academic year, was titled “Economy-wide deep decarbonization: Beyond electricity.” Symposium co-chair Ernest Moniz explained in his introductory remarks that while most efforts to curb greenhouse gas emissions tend to focus on electricity generation, which produces 28 percent of the total emissions, “72 percent of the emissions we need to address are outside the electricity sector.” These sectors include transportation, which produces 29 percent; industry, which accounts for 22 percent; commercial and residential buildings, at 12 percent; and agriculture, at 9 percent; according to 2017 figures....
Mark shared this article 4y
A graphene roll-out
Posted by Mark Field from MIT in Industrial processes
The team’s results are the first demonstration of an industrial, scalable method for manufacturing high-quality graphene that is tailored for use in membranes that filter a variety of molecules, including salts, larger ions, proteins, or nanoparticles. Such membranes should be useful for desalination, biological separation, and other applications. “For several years, researchers have thought of graphene as a potential route to ultrathin membranes,” says John Hart, associate professor of mechanical engineering and director of the Laboratory for Manufacturing and Productivity at MIT. “We believe this is the first study that has tailored the manufacturing of graphene toward membrane applications, which require the graphene to be seamless, cover the substrate fully, and be of high quality.” Hart is the senior author on the paper, which appears online in the journal Applied Materials and Interfaces. The study includes first author Piran Kidambi, a former MIT postdoc who is now an assistant professor at Vanderbilt University; MIT graduate students Dhanushkodi Mariappan and Nicholas Dee; Sui Zhang of the National University of Singapore; Andrey Vyatskikh, a former student at the Skolkovo Institute of Science and Technology who is now at Caltech; and Rohit Karnik, an associate professor of mechanical engineering at MIT....
Mark shared this article 4y
Understanding how fluids heat or cool surfaces
Posted by Mark Field from MIT in Industrial processes
Whether it’s water flowing across a condenser plate in an industrial plant, or air whooshing through heating and cooling ducts, the flow of fluid across flat surfaces is a phenomenon at the heart of many of the processes of modern life. Yet, aspects of this process have been poorly understood, and some have been taught incorrectly to generations of engineering students, a new analysis shows. The study examined several decades of published research and analysis on fluid flows. It found that, while most undergraduate textbooks and classroom instruction in heat transfer describe such flow as having two different zones separated by an abrupt transition, in fact there are three distinct zones. A lengthy transitional zone is just as significant as the first and final zones, the researchers say. The discrepancy has to do with the shift between two different ways that fluids can flow. When water or air starts to flow along a flat, solid sheet, a thin boundary layer forms. Within this layer, the part closest to the surface barely moves at all because of friction, the part just above that flows a little faster, and so on, until a point where it is moving at the full speed of the original flow. This steady, gradual increase in speed across a thin boundary layer is called laminar flow. But further downsteam, the flow changes, breaking up into the chaotic whirls and eddies known as turbulent flow....
Mark shared this article 4y
A controllable membrane to pull carbon dioxide out of exhaust streams
A new system developed by chemical engineers at MIT could provide a way of continuously removing carbon dioxide from a stream of waste gases, or even from the air. The key component is an electrochemically assisted membrane whose permeability to gas can be switched on and off at will, using no moving parts and relatively little energy. The membranes themselves, made of anodized aluminum oxide, have a honeycomb-like structure made up of hexagonal openings that allow gas molecules to flow in and out when in the open state. However, gas passage can be blocked when a thin layer of metal is electrically deposited to cover the pores of the membrane. The work is described today in the journal Science Advances, in a paper by Professor T. Alan Hatton, postdoc Yayuan Liu, and four others. This new “gas gating” mechanism could be applied to the continuous removal of carbon dioxide from a range of industrial exhaust streams and from ambient air, the team says. They have built a proof-of-concept device to show this process in action....
Mark shared this article 4y
Industrial sector amped for digital transformation | MIT Sloan
Manufacturing often gets dinged for being stuck in another era, but in truth the industrial sector is well positioned to surge ahead with digital transformation, thanks to investments in augmented reality, the “industrial internet of things,” machine learning, and artificial intelligence. These advanced technologies are already having an impact on how manufacturers design, produce, and service products, according to Joseph Biron, chief technology officer, IoT, at Boston-based PTC, a company with roots in 3D design that now offers software for industrial transformation. Biron, who spoke at the recent MIT Sloan CIO Symposium, cited data from market research firm IDC estimating that more than 30% of the $1 trillion to be spent on digital transformation in the next year will be earmarked for initiatives in the discrete and process manufacturing sectors. The industrial IoT, in particular, is a huge area of focus for manufacturing. A PTC survey pegged adoption of IIoT in businesses’ manufacturing functions at 46% — more than two times the rate compared to service (22%) and operations (19%) areas, and well beyond planned IoT implementations in product development groups (4%)....
Mark shared this article 4y
WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x