Invite your colleagues
And receive 1 week of complimentary premium membership
Upcoming Events (0)
ORGANIZE A MEETING OR EVENT
And earn up to €300 per participant.
Sub Circles (0)
No sub circles for Additive Manufacturing & 3D printing
Research Topics (0)
No research topics
New 3-D printer is 10 times faster than commercial counterparts
MIT engineers have developed a new desktop 3-D printer that performs up to 10 times faster than existing commercial counterparts. Whereas the most common printers may fabricate a few Lego-sized bricks in one hour, the new design can print similarly sized objects in just a few minutes. The key to the team’s nimble design lies in the printer’s compact printhead, which incorporates two new, speed-enhancing components: a screw mechanism that feeds polymer material through a nozzle at high force; and a laser, built into the printhead, that rapidly heats and melts the material, enabling it to flow faster through the nozzle. The team demonstrated its new design by printing various detailed, handheld 3-D objects, including small eyeglasses frames, a bevel gear, and a miniature replica of the MIT dome — each, from start to finish, within several minutes. “If I can get a prototype part, maybe a bracket or a gear, in five to 10 minutes rather than an hour, or a bigger part over my lunch break rather than the next day, I can engineer, build, and test faster,” says Hart, who is also director of MIT’s Laboratory for Manufacturing and Productivity and the Mechanosynthesis Group. “If I’m a repair technician and I could have a fast 3-D printer in my vehicle, I could 3-D-print a repair part on-demand after I figure out what’s broken. I don’t have to go to a warehouse and take it out of inventory.”...
Mark shared this article 4y
MIT researchers develop low-cost ‘DefeXtiles’ under-extrusion 3D printing method  - 3D Printing Industry
Researchers from the Massachusetts Institute of Technology have demonstrated a novel ‘under-extrusion’ method of 3D printing textile products. ...
Mark shared this article 4y
A new era in 3-D printing
In the mid-15th century, a new technology that would change the course of history was invented. Johannes Gutenberg’s printing press, with its movable type, promoted the dissemination of information and ideas that is widely recognized as a major contributing factor for the Renaissance. Over 500 years later, a new type of printing was invented in the labs of MIT. Emanuel Sachs, professor of mechanical engineering, invented a process known as binder jet printing. In binder jet printing, an inkjet printhead selectively drops a liquid binder material into a powder bed — creating a three-dimensional object layer by layer. Sachs coined a new name for this process: 3-D printing. “My father was a publisher and my mother was an editor,” explains Sachs. “Growing up, my father would take me to the printing presses where his books were made, which influenced my decision to name the process 3-D printing.” Sachs’ binder jet printing process was one of several technologies developed in the 1980s and '90s in the field now known as additive manufacturing, a term that has come to describe a wide variety of layer-based production technologies. Over the past three decades, there has been an explosion in additive manufacturing research. These technologies have the potential to transform the way countless products are designed and manufactured. One of the most immediate applications of 3-D printing has been the rapid prototyping of products. “It takes a long time to prototype using traditional manufacturing methods,” explains Sachs. 3-D printing has transformed this process, enabling rapid iteration and testing during the product development process....
Mark shared this article 4y
Accelerating 3-D printing
Imagine a world in which objects could be fabricated in minutes and customized to the task at hand. An inventor with an idea for a new product could develop a prototype for testing while on a coffee break. A company could mass-produce parts and products, even complex ones, without being tied down to part-specific tooling and machines that can’t be moved. A surgeon could get a bespoke replacement knee for a patient without leaving the operating theater. And a repair person could identify a faulty part and fabricate a new one on site — no need to go to a warehouse to get something out of inventory. Such a future could be made possible by 3-D printing, says A. John Hart, an associate professor of mechanical engineering and director of the Laboratory for Manufacturing and Productivity and the Mechanosynthesis Group at MIT. A common method of 3-D printing, extrusion, starts with a polymer rod, or filament. The filament is heated, melted, and forced through a nozzle in a printhead. The printhead moves across a horizontal surface (the print bed) in a prescribed pattern, depositing one layer of polymer at a time. On each pass over the print bed, instructions tell the printhead exactly where material should and shouldn’t be extruded so that, in the end, the layers stack up to form the desired, freestanding 3-D object....
Mark shared this article 4y