Synthetic multi-dimensional Aharonov-Bohm cages in Fock state lattices

Authors: ...
 16th Dec 2024  arXiv Download
Posted by Alumni
February 3, 2025
Fock-state lattices (FSLs), composed of photon number states with infinite Hilbert space, have emerged as a promising platform for simulating high-dimensional physics due to their potential to extend into arbitrarily high dimensions. Here, we demonstrate the construction of multi-dimensional FSLs using superconducting quantum circuits. By controlling artificial gauge fields within their internal structures, we investigate flux-induced extreme localization dynamics, such as Aharonov-Bohm caging, extending from 2D to 3D. We also explore the coherent interference of quantum superposition states, achieving extreme localization within specific subspaces assisted by quantum entanglement. Our findings pave the way for manipulating the behavior of a broad class of quantum states in higher-dimensional systems. learn more on arXiv
AUTHORS
ATTACHMENTS

WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x