MarsQE: Semantic-Informed Quality Enhancement for Compressed Martian Image

Authors: ...
 14th Apr 2024  arXiv Download
Posted by Alumni
March 18, 2025
Lossy image compression is essential for Mars exploration missions, due to the limited bandwidth between Earth and Mars. However, the compression may introduce visual artifacts that complicate the geological analysis of the Martian surface. Existing quality enhancement approaches, primarily designed for Earth images, fall short for Martian images due to a lack of consideration for the unique Martian semantics. In response to this challenge, we conduct an in-depth analysis of Martian images, yielding two key insights based on semantics: the presence of texture similarities and the compact nature of texture representations in Martian images. Inspired by these findings, we introduce MarsQE, an innovative, semantic-informed, two-phase quality enhancement approach specifically designed for Martian images. The first phase involves the semantic-based matching of texture-similar reference images, and the second phase enhances image quality by transferring texture patterns from these reference images to the compressed image. We also develop a post-enhancement network to further reduce compression artifacts and achieve superior compression quality. Our extensive experiments demonstrate that MarsQE significantly outperforms existing approaches for Earth images, establishing a new benchmark for the quality enhancement on Martian images. learn more on arXiv
AUTHORS
Astronomy & Space
Astronomy & Space
Astronomy & Space
Astronomy & Space
ATTACHMENTS

WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x