Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing

Authors: ...
 10th Jun 2021  arXiv Download
Posted by Alumni
January 9, 2025
This study proposes an innovative explainable predictive quality analytics solution to facilitate data-driven decision-making for process planning in manufacturing by combining process mining, machine learning, and explainable artificial intelligence (XAI) methods. For this purpose, after integrating the top-floor and shop-floor data obtained from various enterprise information systems, a deep learning model was applied to predict the process outcomes. Since this study aims to operationalize the delivered predictive insights by embedding them into decision-making processes, it is essential to generate relevant explanations for domain experts. To this end, two complementary local post-hoc explanation approaches, Shapley values and Individual Conditional Expectation (ICE) plots are adopted, which are expected to enhance the decision-making capabilities by enabling experts to examine explanations from different perspectives. After assessing the predictive strength of the applied deep neural network with relevant binary classification evaluation measures, a discussion of the generated explanations is provided. learn more on arXiv
AUTHORS
Enterprise Technology
ATTACHMENTS

WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x