A Deep Learning Method for Predicting Mergers and Acquisitions: Temporal Dynamic Industry Networks

Authors: ...
 17th Oct 2024  arXiv Download
Posted by Alumni
January 21, 2025
Merger and Acquisition (M&A) activities play a vital role in market consolidation and restructuring. For acquiring companies, M&A serves as a key investment strategy, with one primary goal being to attain complementarities that enhance market power in competitive industries. In addition to intrinsic factors, a M&A behavior of a firm is influenced by the M&A activities of its peers, a phenomenon known as the "peer effect." However, existing research often fails to capture the rich interdependencies among M&A events within industry networks. An effective M&A predictive model should offer deal-level predictions without requiring ad-hoc feature engineering or data rebalancing. Such a model would predict the M&A behaviors of rival firms and provide specific recommendations for both bidder and target firms. However, most current models only predict one side of an M&A deal, lack firm-specific recommendations, and rely on arbitrary time intervals that impair predictive accuracy. Additionally, due to the sparsity of M&A events, existing models require data rebalancing, which introduces bias and limits their real-world applicability. To address these challenges, we propose a Temporal Dynamic Industry Network (TDIN) model, leveraging temporal point processes and deep learning to capture complex M&A interdependencies without ad-hoc data adjustments. The temporal point process framework inherently models event sparsity, eliminating the need for data rebalancing. Empirical evaluations on M&A data from January 1997 to December 2020 validate the effectiveness of our approach in predicting M&A events and offering actionable, deal-level recommendations. learn more on arXiv
AUTHORS
ATTACHMENTS

WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x