A Comparative Study on Reward Models for UI Adaptation with Reinforcement Learning

Authors: ...
 15th Jan 2024  arXiv Download
Posted by Alumni
April 17, 2025
Adapting the User Interface (UI) of software systems to user requirements and the context of use is challenging. The main difficulty consists of suggesting the right adaptation at the right time in the right place in order to make it valuable for end-users. We believe that recent progress in Machine Learning techniques provides useful ways in which to support adaptation more effectively. In particular, Reinforcement learning (RL) can be used to personalise interfaces for each context of use in order to improve the user experience (UX). However, determining the reward of each adaptation alternative is a challenge in RL for UI adaptation. Recent research has explored the use of reward models to address this challenge, but there is currently no empirical evidence on this type of model. In this paper, we propose a confirmatory study design that aims to investigate the effectiveness of two different approaches for the generation of reward models in the context of UI adaptation using RL: (1) by employing a reward model derived exclusively from predictive Human-Computer Interaction (HCI) models (HCI), and (2) by employing predictive HCI models augmented by Human Feedback (HCI&HF). The controlled experiment will use an AB/BA crossover design with two treatments: HCI and HCI&HF. We shall determine how the manipulation of these two treatments will affect the UX when interacting with adaptive user interfaces (AUI). The UX will be measured in terms of user engagement and user satisfaction, which will be operationalized by means of predictive HCI models and the Questionnaire for User Interaction Satisfaction (QUIS), respectively. By comparing the performance of two reward models in terms of their ability to adapt to user preferences with the purpose of improving the UX, our study contributes to the understanding of how reward modelling can facilitate UI adaptation using RL. learn more on arXiv
AUTHORS
Software Engineering
Software Engineering
Software Engineering
Software Engineering
ATTACHMENTS

WE USE COOKIES TO ENHANCE YOUR EXPERIENCE
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.
I AGREELearn more
x