Posted by Alumni from MIT
December 21, 2024
But devices that record electrical signals in cell cultures and other liquid environments often use wires to connect each electrode on the device to its respective amplifier. Because only so many wires can be connected to the device, this restricts the number of recording sites, limiting the information that can be collected from cells. Small electrical changes in the surrounding liquid environment alter how the antennas scatter the light. Using an array of tiny antennas, each of which is one-hundredth the width of a human hair, the researchers could measure electrical signals exchanged between cells, with extreme spatial resolution. The devices, which are durable enough to continuously record signals for more than 10 hours, could help biologists understand how cells communicate in response to changes in their environment. In the long run, such scientific insights could pave the way for advancements in diagnosis, spur the development of targeted treatments, and enable more precision... learn more