Find out how we connect targeted research expertise in academia to your business requirements. Discover how we accelerate business innovation and take care of the paperwork (hourly fees, fixed price, IP acquisition, seed funding)
Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. A quantum computer is used to perform such computation, which can be implemented theoretically or physically.The field of quantum computing is actually a sub-field of quantum information science, which includes quantum cryptography and quantum communication. Quantum Computing was started in the early 1980s when Richard Feynman and Yuri Manin expressed the idea that a quantum computer had the potential to simulate things that a classical computer could not. In 1994, Peter Shor published an algorithm that is able to efficiently solve some problems that are used in asymmetric cryptography that are considered hard for classical computers.There are currently two main approaches to physically implementing a quantum computer: analog and digital. Analog approaches are further divided into quantum simulation, quantum annealing, and adiabatic quantum computation. Digital qu...moreQuantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. A quantum computer is used to perform such computation, which can be implemented theoretically or physically.The field of quantum computing is actually a sub-field of quantum information science, which includes quantum cryptography and quantum communication. Quantum Computing was started in the early 1980s when Richard Feynman and Yuri Manin expressed the idea that a quantum computer had the potential to simulate things that a classical computer could not. In 1994, Peter Shor published an algorithm that is able to efficiently solve some problems that are used in asymmetric cryptography that are considered hard for classical computers.There are currently two main approaches to physically implementing a quantum computer: analog and digital. Analog approaches are further divided into quantum simulation, quantum annealing, and adiabatic quantum computation. Digital quantum computers use quantum logic gates to do computation. Both approaches use quantum bits or qubits. Qubits are fundamental to quantum computing and are somewhat analogous to bits in a classical computer. Qubits can be in a 1 or 0 quantum state. But they can also be in a superposition of the 1 and 0 states. However, when qubits are measured the result is always either a 0 or a 1; the probabilities of the two outcomes depends on the quantum state they were in....less
Unicircles uses cookies to personalize content, provide certain advanced features, and to analyze traffic. Per our privacy policy, we WILL NOT share information about your use of our site with social media, advertising, or analytics companies. If you continue using Unicircles by clicking below link, you agree to our use of Cookies while using Unicircles.